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A spatially extended classical system with metastable states subject to weak spatiotemporal noise can exhibit
a transition in its activation behavior when one or more external parameters are varied. Depending on the
potential, the transition can be first or second order, but there exists no systematic theory of the relation
between the order of the transition and the shape of the potential barrier. In this paper, we address that question
in detail for a general class of systems whose order parameter is describable by a classical field that can vary
in both space and time, and whose zero-noise dynamics are governed by a smooth polynomial potential. We
show that a quartic potential barrier can have only second-order transitions, confirming an earlier conjecture
�D. L. Stein, J. Stat. Phys. 114, 1537 �2004��. We then derive, through a combination of analytical and
numerical arguments, both necessary and sufficient conditions to have a first-order vs a second-order transition
in noise-induced activation behavior, for a large class of systems with smooth polynomial potentials of arbi-
trary order. We find in particular that the order of the transition is especially sensitive to the potential behavior
near the top of the barrier.
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I. INTRODUCTION

When a spatially extended classical system with multiple
locally stable states is perturbed by weak spatiotemporal
noise, a transition in its activation behavior can occur as one
or more parameters of the system are varied �1–3�. In the
simplest one-dimensional systems this parameter is simply
the length of the interval on which the system is defined, but
for more complicated systems other parameters come into
play. For example, a transition from Arrhenius to non-
Arrhenius behavior in thermally activated magnetization re-
versal in thin annular nanomagnets can occur either as ring
size increases or as the externally applied magnetic field de-
creases �4,5�. Another example is a crossover from uniform
to instantonlike decay of metastable metal nanowires �6� as
either the length of the nanowire or the stress applied to it is
varied. A similar crossover, from thermal activation to quan-
tum tunneling, occurs in various systems as the temperature
is lowered �7–17�.

These two cases are formally related through a mapping
that identifies interval length �and/or magnetic field, stress, if
appropriate� in the classical field case to temperature in the
quantum case; in particular, increasing interval length in the
former corresponds to the lowering of temperature in the
latter, with thermal activation in a classical field theory of
infinite domain size mapping to zero-temperature tunneling
in quantum field theories. These transitions are fundamen-
tally different from the more usual sort, in which a change in
order parameter �i.e., expectation value of the field� results
from varying a control parameter, such as coupling strengths
in the Hamiltonian or noise amplitude. �For an extensive
discussion of this more conventional kind of transition
within a noisy field-theoretical framework, see, for example,
�18�.� The extent to which the more unconventional type of
transition under discussion here can be compared to a true
second-order phase transition, and where the analogy breaks

down, was discussed extensively in �19�. �For recent work
on discretized versions of these and similar models, see
�20,21�.�

Chudnovsky �14� first noted that the classical↔quantum
transition in an extended system with a single degree of free-
dom can be either first or second order, depending on the
potential. This observation has important applications. First-
order transitions in the classical-quantum escape rate have
been considered in anisotropic bistable large-spin models
�22� and biaxial spin systems subject to longitudinal fields
�23�, and have been more generally considered in the decay
of metastable states in quantum field theories �16,24�. A gen-
eral discussion can be found in �25�.

Similarly, a first-order transition can also occur in classi-
cal transitions between two thermally activated regimes, as
was recently found by the authors �6� in the decay of nano-
wires due to thermal fluctuations �cf. Fig. 2 of Ref. �6��.
Despite its potential importance, relatively little systematic
work has been done to identify the general conditions under
which one or the other kind of transition occurs. It was con-
jectured �1� that smooth polynomial potentials with terms no
higher than quartic display only second-order transitions. It
is also known that higher-order terms can lead to a first-order
transition �24�. At the present time, however, there is no sys-
tematic theory of how the order of the transition depends on
potential characteristics. The purpose of this paper is to ad-
dress that problem.

II. MODEL

We will consider a general class of models of extended
systems describable by a classical field ��z , t� defined on the
spatial interval �−L /2,L /2�, subject to a potential V��� and
perturbed by spatiotemporal white noise �26�. Time evolu-
tion is governed by the stochastic Ginzburg-Landau equation
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�t� = �zz� − ��V��� + �2T��z,t� , �1�

where all dimensional quantities have been scaled out. The
first term on the right-hand side �RHS� arises from a field
“stiffness,” i.e., an energy penalty for spatial variations
of the field. The noise ��z , t� satisfies ���z1 , t1���z2 , t2��
=��z1−z2���t1− t2�, and its magnitude T is small compared to
all other energy scales in the problem �formally, our analysis
will be asymptotically valid in the T→0 limit�.

The zero-noise dynamics of �1� can be written as the
variation of an action H with the field �:

�t� = − �H/�� �2�

with

H��� � 	
−L/2

L/2

dz
1

2
��z��2 + V���� . �3�

Stationary solutions of �2� describe stable, metastable, and
transition �i.e., saddle� states of the system.

In the weak-noise �T→0� limit, the classical activation
rate for a transition out of a �meta�stable well is

� � �0 exp�− �W/T� , �4�

where the activation barrier �W is the action difference be-
tween the transition state and the initial �meta�stable state.
The rate prefactor �0 is determined by fluctuations about the
most probable escape path. When the top of the barrier is
locally quadratic, the prefactor �0 is independent of tempera-
ture. In such circumstances the escape rate �4� is said to be of
the Arrhenius–van’t Hoff �or often simply Arrhenius� form.
Here we will mostly be concerned with the behavior of the
activation barrier �W.

III. TRANSITION IN ACTIVATION BEHAVIOR

We briefly summarize here the derivation of a second-
order transition in the noise-induced barrier crossing de-
scribed by �1� between wells in the simple bistable symmet-
ric quartic potential

Vs��� = ��2 − 1�2, �5�

with Neumann boundary conditions �z�−L/2= �z�L/2=0.
The discussion follows that of �19�, to which we refer the
reader for details.

Because of the symmetry of the potential �which is not
necessary for the transition to occur �1��, the change in acti-
vation behavior arises from a bifurcation of the transition
state. Below a critical length Lc the transition state �t is
constant, while above Lc it becomes a pair of degenerate,
spatially varying, instanton configurations �2�:

�t = �0, L � Lc,

�� 2m

1 + m
sn
� 2z

�m + 1
�m� , L 	 Lc, � �6�

where sn� · m� is the Jacobi elliptic sn function with param-
eter 0
m
1. Its quarter period is given by K�m�, the com-
plete elliptic integral of the first kind �27�, which is a mono-

tonically increasing function of m. As m→0+, K�m�
decreases to � /2, and sn� · m�→sin�·�. In this limit the
saddle state smoothly degenerates to the �t=0 configuration.
As m→1−, the quarter-period increases to infinity �with a
logarithmic divergence�, and sn� · m�→ tanh�·�, the �nonpe-
riodic� single-kink sigmoidal function. The Langer-Callan-
Coleman �28–31� “bounce” solution is thereby recovered as
L→�.

The value of m in �6� is determined by the interval length
L and the Neumann boundary conditions, which require that

L = �m + 1K�m� . �7�

The critical length is determined by �7� when m=0; that is,
Lc=� /2. As previously noted, m→1 corresponds to L→�,
and the activation energy smoothly approaches the
asymptotic value of �W�=4�2 /3. The transition state for an
intermediate value of m, corresponding to L=5, is shown in
the inset of Fig. 1.

The activation energy �W can be computed in closed
form for all LLc �below Lc, it is simply �W=L�:

�W =
8�1 + m�E�m� − �1 − m��3m + 5�K�m�

3�1 + m�3/2 , �8�

with E�m� the complete elliptic integral of the second kind
�27�. The activation energy as a function of L is shown in
Fig. 1�a�. Note that the curve of �W vs L and its first deriva-
tive are both continuous at Lc; the second derivative, how-
ever, is discontinuous, as might be expected of a second-
order-like phase transition.

A more profound manifestation of critical behavior at Lc
is exhibited by the rate prefactor �0, which �in the

FIG. 1. �a� Activation energy �W and �b� rate prefactor �0 as
functions of the interval length L, for the potential given by Eq. �5�
with Neumann boundary conditions. The dashed line indicates the
critical interval length Lc=� /2 at which the saddle state bifurcation
takes place, showing the power-law divergence of the prefactor. The
transition state �t�z� for L=5 �corresponding to m=0.986� de-
scribed by Eq. �6� is displayed in the inset �only one of the sym-
metric pair is shown.� Note that quantities in all figures are ex-
pressed in dimensionless units �see text�.
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asymptotic limit T→0� diverges at Lc, as shown in Fig. 1�b�.
This is striking, but requires interpretation. Because it is not
relevant to the present discussion, we refer the interested
reader to �19�.

This behavior is generic for a whole class of potentials, as
described below, but first-order transitions have also been
observed �6�, leading to a continuous but nondifferentiable
activation barrier �W at the transition points. This is illus-
trated for various potentials in Fig. 2. The second-order tran-
sition is still present, but is usually not physically observable,
as it happens for higher-energy transition states �note, how-
ever, the exception in Fig. 2, dotted line�.

IV. ORDER OF THE TRANSITION

Equations �2� and �3� lead to the �typically nonlinear� dif-
ferential equation for stationary states

�� = V���� . �9�

If we map the field � to position and the coordinate z to time,
the solutions to this equation are equivalent to the trajectories
of a classical particle moving in the inverted potential −V���
�32�. The bounce, or instanton, transition state �cf. Eq. �6�,
which determines the activation behavior when LLc� then
corresponds to a half period of such a periodic classical tra-
jectory.

These classical trajectories have a corresponding “energy”

Ẽ�−E�L� given by �cf. Eq. �6� of �14��

− E�L� =
1

2
����2 − V��� . �10�

This energy of a classical instanton trajectory should not be
confused with the activation barrier �W given by the action

difference between the transition and metastable states. Ẽ
corresponds to the energy of a classical particle undergoing
periodic motion in the inverted potential −V���. It is deter-
mined either by the temperature in the thermally assisted
tunneling problem, or by the interval length in a stochastic
classical Ginzburg-Landau field theory.

We illustrate the behavior of the energy for the simple
case of the symmetric quartic potential given by Eq. �5�. For
L�Lc, the transition state �t=0 �cf. Eq. �6��, and the energy

E=−Ẽ=1, independent of length. For LLc, the energy E
monotonically decreases to zero as interval length increases.
As a function of m �related to L through Eq. �7��, it is given
by

E�m� = 1 −
4m

�1 + m�2 . �11�

The length as a function of energy is shown in Fig. 3 for
various potentials, plotted in the figure inset, with the solid
line corresponding to Eq. �5�. It is instructive to compare this
to the behavior of the activation energy �W as a function of
length �Fig. 1�.

As first noted by Chudnovsky �14�, the order of the tran-
sition is related to behavior of the period L of the instanton
trajectory vs its energy E: a monotonic decrease, as in Fig. 3,
signifies a second-order transition while a nonmonotonic de-
crease corresponds to a first-order transition, as shown in
Fig. 4 for a variety of potentials.

Our interest here is in determining the relation between
the potential properties and the order of the transition. In

FIG. 2. Activation barrier �W �black lines� for various poten-
tials exhibiting first-order transitions, marked by open circles. The
line styles correspond to the following potentials: �solid� V���=1
−4�2 /3−�4+4�5 /3, �dashed� V���=1−�2−�3+�5, �dot-dashed�
V���=1−2�2 /3−3�3 /2+7�5 /6, and �dotted� V���=1−13�2 /12
−�3+�4 /4+5�5 /6, with the curves shifted horizontally to improve
readability. The �second-order� transition between uniform and
instanton-type escape is marked by an open square for each curve.
Activation barriers for higher-energy states are shown with gray
lines. Degenerate instantonlike saddle states corresponding to the
first-order transition for the dotted line are shown in the inset. Both
states have the same length and energy. Note that the potential
described by the rightmost curve �dotted line� exhibits a second-
order followed by a first-order transition.

FIG. 3. Energy of the classical trajectory determining activation
behavior for �solid line� the symmetric quartic potential of Eq. �5�,
�dashed line� V���=1−5�2 /2+�3+�4 /2, �dot-dashed line� V���
=1−2�2+�3 /2+�5 /2, and �dotted line� V���=1−7�2 /4+�3 /3
+5�6 /12. The corresponding potentials V��� are plotted in the in-
set. As discussed in the text, the monotonic decrease of energy with
interval length signifies a second-order phase transition at Lc.
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order to facilitate comparison between different potential
barriers, we rescale V��� to unit barrier height and width, the
latter being defined as the distance between the maximum
and minimum of V. Specifically, we rescale V��� so that
V�0�=1, V��0�=0, V��0��0 and V�1�=0, V��1�=0, V��1�
0. We will generally take the state ��1 to be metastable;
it can decay toward negative values of � if there is a �e
�0 such that V��e�
0.

We begin with some general considerations, valid for all
potential barriers. All L�E� curves in both Figs. 3 and 4 di-
verge as E→0+. This generic behavior is easily understood
from the classical-particle analogy, as a particle with a peri-
odic orbit will have an arbitrarily long period if its energy is
close to, but lower than, a local maximum of the potential
−V���.

Similarly, a barrier containing a local, secondary maxi-
mum and minimum pair �see, e.g., the dot-dashed line in the
inset of Fig. 4� will have a divergence of L�E� at the energy
corresponding to the secondary minimum. Thus, a potential
barrier that includes a local metastable state leads to a first-
order transition of the activation behavior. That transition, in
this case, is between a two-step escape through the local
minimum and a direct escape, with both paths having instan-
tonlike transition states.

As L�E� initially decreases for increasing E when E is
small, a sufficient condition for having a first-order transition
is that dL /dE0 for E→1−. The corresponding condition
on the potential V can be derived analytically using pertur-
bation theory around the barrier maximum.

More general conclusions require a numerical determina-
tion of L�E�. To simplify the analysis, but still keep the con-
clusions general, we consider smooth potentials of the form

V��� = 1 − �2�2 + �m�m + �n�n, �12�

with 2�m�n. Rescaling to unit barrier height and width
leaves a single free parameter −n / �n−m���m�2 / �m−2�,
with

�2 =
n + �n − m��m

n − 2
�13�

and

�n =
2 − �m − 2��m

n − 2
. �14�

Our approach is to solve numerically the nonlinear differen-
tial equation corresponding to a particle in an inverted po-
tential −V��� with initial condition ��−L /2�=�0, with 0

�0�1, and ���−L /2�=0, and with L the minimal length
satisfying Neumann boundary conditions at z=L /2. E��0�
follows from Eq. �10�, thus providing the function L�E� in
parametric form.

Our findings are summarized graphically in Fig. 5, where
−�2 /2+�n /n �solid lines� and ��m /m �dashed lines� are
plotted separately. Potentials having first-order transitions are
shown on the left-hand side of the dotted line, and those with
second-order transitions are on the right-hand side. All po-
tentials on the left-hand-side have a negative �m term, which
appears to be a necessary, although not a sufficient, condition
for the existence of a first-order transition.

More specifically, for a potential of the form �12�, the
transition is unique and second order if either of the follow-
ing conditions is satisfied: �m	0; or �m�0, with m=2k
+1 and n=2l, k and l being positive integers such that 1
�k� l. The second condition is actually a subset of the first
for the symmetric potential V�−��. This confirms in particu-
lar that polynomial potentials with at most quartic terms ex-
hibit only second-order transitions �1�.

On the other hand, the transition is first order if �m�0
and either m=2k, with k1, or m=2k+1 and n=2l+1, with
1
k� l.

If the third term on the RHS of Eq. �12� is an even power
of �, then the transition is first order if and only if �m�0. If
it is an odd power of �, the transition is first order if the third

FIG. 4. Energy of the classical trajectory determining activation
behavior for various potentials exhibiting first-order transitions, as
evidenced by the nonmonotonic behavior of L�E�. The line styles
correspond to those of Fig. 2, with the corresponding potentials
V��� plotted in the inset.
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FIG. 5. �Color online� Various types of potentials of the form
given by Eq. �12�, with the second term ��m /m plotted as a �blue�
dashed line, and the other terms −�2 /2+�n /n plotted as a �red�
solid line. Potentials on the left-hand side of the dotted line have
first-order transitions, while those on the right-hand side have
second-order transitions.
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term is an odd power of � as well, but with an opposite sign,
so that there is a competition between the two terms. The
mechanism leading to a first-order transition thus seems to be
different depending on the parity of the third term in V, as
discussed below.

V. POTENTIALS WITH A SECOND-ORDER TRANSITION

Potentials given by Eq. �12� have a second-order transi-
tion in the following cases: m=2k for k1 and �m	0; and
m=2k+1 for k	1 and at least one of the conditions n=2l or
�m	0. These potential barriers all look very similar, and
have the same generic behavior, shown in the inset of Fig. 3
for various combinations of m, n, and �m: The function L�E�
decreases monotonically for E0, and the escape energy has
a linear part corresponding to a homogeneous transition for
L�Lc, with a second-order transition to instantonlike escape
at Lc=� /�2�2.

The transition length is set by the −�2 term in the poten-
tial: a potential V���=1−�2�2 gives an equation for the
transition state that is equivalent to a harmonic oscillator in
one dimension, and therefore has a transition state whose
length L=� /�2�2 and energy Eu=1 are independent of the
initial value �0. The term proportional to �n modifies that
behavior by increasing the length of the transition state for a
given initial value �0 compared to the inverted quadratic
potential. In analogy to a particle in a one-dimensional po-
tential −V, it decreases the slope of the potential for larger �,
proportional to the force experienced by the particle, thus
increasing the period of the orbit, until one approaches the
maximum of −V, where the orbital period diverges.

Considering the case �m=0, one can study numerically
the ratio of the escape barrier �W� for large interval length L
to the energy at the transition point �W�Lc� as a function of
n �see Fig. 6�. This ratio approaches 1 as a power law with
exponent 3/2 for n�1, with some even-odd oscillations. As
n becomes large, the transition therefore looks more and

more like a first-order transition, especially for odd n. Addi-
tionally, the curve L�E� remains almost flat for an increasing
range of E�1 as n becomes larger. This implies that, at the
critical length Lc, there is a continuum of transition states
with quasidegenerate energies available for the escape.

VI. POTENTIAL WITH A FIRST-ORDER TRANSITION:
EVEN m=2k

Negative terms of power m larger than 2 in the Taylor
expansion of V��� around its maximum are responsible for
the change of order of the transition, but the mechanism
creating a first-order transition depends on the parity of m.

In the case of an even m=2k2, with �m=−�2k, the
function L�E� has a local minimum at some energy 0�E
�1. The solid line in Fig. 4 shows a typical behavior for that
type of potential. The final increase of L�E� as E→1, corre-
sponding to an initial decrease of L��0� for �0�1, is driven
by the middle term in V, −�2k�2k: on its own, such a term
creates a divergence of the curve L�E� for E→1, or �0→0,
with L thus being an increasing function of E. One can de-
rive an analytic expression for L�E� for a potential V���=1
−��m /m by using Eq. �10� to express dz in terms of d� and
V���. Integrating that expression yields

L�E� =
�2���1/m��−1/m

m���m + 2�/2m�
�1 − E��2−m�/2m. �15�

The presence of the quadratic term removes the divergence,
but the increase for L�E� as E→1 remains. In terms of the
classical particle, the −�2k term increases the initial force on
the particle compared to the quadratic case, thus decreasing
the oscillation period. As E→1−, the quadratic term domi-
nates and limits the period to its value at Lc. As the energy E
decreases the last term in Eq. �12� inverts the trend and in-
creases the period again, thus creating a minimum in L�E�.

This result can be generalized to the potential

V��� = 1 − �2�2 + �m+2�
k	0

�k�
k, �16�

with m0 and �0�0, for energies E���=1−�2�2, ��1, us-
ing perturbation theory. Using Eq. �10�, one can derive an
expression for the half period

L�E� = 	
��−��

���� d�

�2�V��� − E�
, �17�

where ����� is the smallest � on the right- or left-hand
side of the maximum such that V(�����)�E���. Using a
series expansion in � for �����, and expanding Eq. �17� to
order �2m, one obtains

L�E = 1 − �2�2� =
�

�
1 + �
k=0

m
1 + �− 1�m+k

2

�k

�2Ak�
m+k

+
�0

2

�4B2m�2m + O���2m+1� , �18�

where the numbers Ak0, k=1, . . . ,m, and B2m0. From

FIG. 6. Ratio of the saturation energy barrier �W� to the energy
barrier at the transition point �W�Lc� as a function of the power n
of the last term in the potential V���=1− �n / �n−2���2+ �2 / �n
−2���n, with circles �triangles� marking odd �even� values of n. The
lines are a guide to the eye showing power laws with exponent 3/2.
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Eq. �18� it is clear that dL /dE=−1 / �2�2��dL /d�0 for E
→1 if the lowest even-power 2n2 term in the potential
V��� has a negative coefficient, regardless of the presence of
odd-power terms, which do not contribute to the slope of
L�E� to that order, provided n
m.

This provides a sufficient, though not necessary, condition
for the presence of a first-order transition: the transition is
first-order if the first even power of � �excluding the qua-
dratic term� in the Taylor expansion of the potential around
its maximum has a negative coefficient, provided its expo-
nent is at most 2m, with m defined in Eq. �16�.

VII. POTENTIAL WITH A FIRST-ORDER TRANSITION:
ODD m=2k+1

Perturbation theory yields no information about the influ-
ence of odd-power terms in the potential as they do not con-
tribute �up to order O���2m� to the slope of L�E� for E→1−.
However, even a negative slope does not imply a second-
order transition, as illustrated in Fig. 4 �dotted and dashed
lines�. In order to study the effect of odd-power terms, we
return to numerics, with a potential

V��� = 1 − �2�2 − �k�2k+1 + �l�
2l+1, �19�

with 1
k� l.
In this case, the function L�E� decreases for E→1−, but

has both a maximum and a minimum for lower energies. For
�k�crit, the maximum of L��0� turns into a divergence.
This is related to the formation of a secondary maximum in
the potential V, as is the case for the dot-dashed line in Fig.
4, where �k is slightly larger than the critical value for that
particular potential. The maximum of L�E� for �k��crit
comes from the “formation” of that secondary maximum
with increasing �k.

Note that the transition from homogeneous to instanton-
like escape �marked by squares in Fig. 2� happens above the
lowest activation energy curve �black line� for potentials
given by Eq. �12�, and is therefore not observable. However
the addition of a positive quartic term to the potential, as is
the case for the dot-dashed line of Figs. 2 and 4, can move
that second-order transition below the first-order one. In that
case there would be two transitions: a second-order transition
from a homogeneous escape to escape through an instanton,
followed by a first-order transition between two different es-
cape routes with instanton transition states �shown in the
inset of Fig. 2�.

VIII. DISCUSSION

We have presented a comprehensive study of the depen-
dence of the order of the barrier crossing transition on po-
tential characteristics, for classical extended systems subject
to weak external spatiotemporal noise. Using a combination
of analytical and numerical methods, we confirmed an earlier

conjecture of one of the authors �1� that smooth potentials
whose highest term is quartic have second-order transitions.
We then considered a wide class of polynomial potentials of
arbitrary order, and determined the potential characteristics
that led to either first- or second-order transitions. These re-
sults are summarized in Fig. 5 and Table I. In particular, we
found that the potential characteristics at the top of the bar-
rier play a central role in determining the order of the tran-
sition.

The order of the transition can play a crucial role in the
understanding of systems near the transition point and in the
design of new experiments �and possibly devices�. For ex-
ample, in �33�, a transition from Ohmic to non-Ohmic be-
havior was observed as the length of the gold nanowires was
changed. This was explained �34� in terms of the transition
predicted in �6� for monovalent metallic nanowires as wire
length changes. So there already exists experimental evi-
dence for a transition. A more systematic experimental inves-
tigation of this Ohmic to non-Ohmic transition is highly de-
sirable in order to examine details of the behavior near the
transition point. Meanwhile, the analysis given here allows
predictions as to which wires �characterized by their radius,
or more easily measurable, long-wire conductance� will un-
dergo one or the other type of transition. These can be mea-
sured as a difference in behavior—sharp discontinuity vs
smooth crossover—of an effective temperature Teff�T� char-
acterizing the barrier crossing rate out of a given metastable
state �22�. Other applications can be found in �25�.

Although our studies are done in the context of classical
transitions between metastable states, they should be gener-
ally applicable to a broad set of problems, including the
classical↔quantum crossover or transitions between re-
gimes of thermally assisted quantum tunneling, following the
mapping described in �19�.
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TABLE I. Summary of results: The first column lists the transi-
tion order �I or II� for the potential V���=−�2+F���, with F���
given in the second column. The third column lists conditions that
F��� needs to satisfy.

F��� Conditions

II �m�m+�n �m	0, 2�m�n

II �k�
2k+1+�2l �k�0, 2�2k+1�2l

I �k�
2k+�n �k�0, 2�2k�n

I �k�
2k+1+�2l+1 �k�0, 1� =k� l

I �n�2n+ �
k	0

�k�
2�m+k�+1+¯ m	1, n1, n
2m,

�0�0, �n�0
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